Code: IT3T1

## II B.Tech - I Semester-Regular/Supplementary Examinations November 2018

## DIGITAL SYSTEM DESIGN (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) $(231.23)_{4}=$ $\qquad$ (base 10)
b) Perform (15) $)_{10}-(28)_{10}$ using 2's complement representation.
c) Perform (24) $)_{10}-(56)_{10}$ in BCD using 10's complement representation.
d) Solve the $(A+B)\left(A^{\prime}+C\right)(B+C)\left(A^{\prime}+D\right)(B+D)$ using Boolean Algebra.
e) Implement OR gate using NAND gates.
f) Express function $(x y+z)(y+x z)$ in sum of minterms and product of maxterms
g) Define fan out of a logic gate.
h) What are the applications of shift register?
i) Compare a decoder with a Demultiplexer.
j) Show characteristic equation of JK-FF.
k) List basic types of programmable logic devices.
PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2. a) Explain about signed magnitude and 2's complement approaches for representing the fixed Point numbers.
Why 2's complement is preferable?
b) The binary numbers listed have a sign bit in the left most position and, if negative, are in 1's complement form.
Perform the arithmetic operations indicated and verify the answers.
i) $100101+110010$
ii) $001000+101010$
iii) 110011-001011
iv) $100001-110100$
3. a) State and prove DeMorgan's laws.
b) Simplify the following Boolean expressions.
i) $A^{\prime} C^{\prime}+A B C+A C '$ to three literals.
ii) $\left(x^{\prime} y^{\prime}+\mathrm{z}\right)^{\prime}+\mathrm{z}^{+} \mathrm{xy}+\mathrm{wz}$ to three literals.
iii) $\mathrm{A}^{\prime} \mathrm{B}\left(\mathrm{D}^{\prime}+\mathrm{C}^{\prime} \mathrm{D}\right)+\mathrm{B}\left(\mathrm{A}+\mathrm{A}^{\prime} \mathrm{CD}\right)$ to one literal.
iv) $\left(\mathrm{A}^{\prime}+\mathrm{C}\right)\left(\mathrm{A}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime} \mathrm{D}\right)$ to four literals.
4. a) Design an 8 -bit BCD adder using 4-bit binary adder. 8 M
b) Design a full - subtractor circuit with three inputs $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and outputs $\mathrm{D}, \mathrm{B}$. The circuit subtracts $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ where Z is the input borrow, B is the output borrow and D is the Difference draw the circuit using NAND gates.
5. List the PLA programming table and draw the PLA structure for the BCD-to-Excess-3-code converter.
6. a) Design a BCD ripple counter using JK flip-flop.

12 M
b) What is SR latch? Explain its operations.

4 M

